Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(35): e202306584, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37366111

RESUMO

The titanium complex of the cis-1,2-diaminocyclohexane (cis-DACH) derived Berkessel-salalen ligand is a highly efficient and enantioselective catalyst for the asymmetric epoxidation of terminal olefins with hydrogen peroxide ("Berkessel-Katsuki catalyst"). We herein report that this epoxidation catalyst also effects the highly enantioselective hydroxylation of benzylic C-H bonds with hydrogen peroxide. Mechanism-based ligand optimization identified a novel nitro-salalen Ti-catalyst of the highest efficiency ever reported for asymmetric catalytic benzylic hydroxylation, with enantioselectivities of up to 98 % ee, while overoxidation to ketone is marginal. The novel nitro-salalen Ti-catalyst also shows enhanced epoxidation efficiency, as evidenced by e.g. the conversion of 1-decene to its epoxide in 90 % yield with 94 % ee, at a catalyst loading of 0.1 mol-% only.

2.
J Am Chem Soc ; 145(22): 12124-12135, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235775

RESUMO

Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.

3.
RSC Med Chem ; 13(9): 1044-1051, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320328

RESUMO

Hexacarbonyl[1,3-dimethoxy-5-((4'-methoxyphenyl)ethynyl)benzene]dicobalt (NAHO27), an organometallic analogue of combretastatin A-4, has been synthesized and its activity against lymphoma, leukemia, breast cancer and melanoma cells has been investigated. It was shown that NAHO27 specifically induces apoptosis in BJAB lymphoma and Nalm-6 leukemia cells at low micromolar concentration and does not affect normal leukocytes in vitro. It also proved to be active against vincristine and daunorubicin resistant leukemia cell lines with p-glycoprotein-caused multidrug resistance and showed a pronounced (550%) synergistic effect when co-applied with vincristine at very low concentrations. Mechanistic investigations revealed NAHO27 to induce apoptosis via the mitochondrial (intrinsic) pathway as reflected by the processing of caspases 3 and 9, the involvement of Bcl-2 and smac/DIABLO, and the reduction of mitochondrial membrane potential. Gene expression analysis and protein expression analysis via western blot showed an upregulation of the proapoptotic protein harakiri by 9%.

4.
Org Biomol Chem ; 20(47): 9368-9377, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36385673

RESUMO

A synthesis of the new tetracyclic scaffold ProM-19, which represents a XPP tripeptide unit frozen in a PPII helix conformation, was developed. As a key building block, N-Boc-protected ethyl (1S,3S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate was prepared through a diastereoselective aza-Diels-Alder reaction and subsequent hydrogenolytic removal of the chiral N-1-phenylethyl substituent under temporary protection of the double bond through dihydroxylation and reconstitution by Corey-Winter olefination. The target compound Boc-[ProM-19]-OMe was then prepared via subsequent peptide coupling and Ru-catalyzed ring-closing metathesis steps employing (S)-N-Boc-allylgylcine and cis-5-vinyl-proline methyl ester as additional building blocks. In addition, Ac-[2-Cl-Phe]-[Pro]-[ProM-19]-OMe was prepared by solution phase peptide synthesis as a potential ligand for the ena-VASP EVH1 domain.


Assuntos
Peptídeos , Conformação Proteica
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142230

RESUMO

Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure-activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.


Assuntos
Alcaloides , Neoplasias de Mama Triplo Negativas , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colágeno Tipo I , Humanos , Alcaloides Indólicos , Indolizinas , Inflamação , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/farmacologia , Paclitaxel/farmacologia , Fenantrenos , Fenantrolinas , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Tylophora
6.
Chembiochem ; 23(17): e202200372, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35785462

RESUMO

During viral cell entry, the spike protein of SARS-CoV-2 binds to the α1-helix motif of human angiotensin-converting enzyme 2 (ACE2). Thus, alpha-helical peptides mimicking this motif may serve as inhibitors of viral cell entry. For this purpose, we employed the rigidified diproline-derived module ProM-5 to induce α-helicity in short peptide sequences inspired by the ACE2 α1-helix. Starting with Ac-QAKTFLDKFNHEAEDLFYQ-NH2 as a relevant section of α1, a series of peptides, N-capped with either Ac-ßHAsp-[ProM-5] or Ac-ßHAsp-PP, were prepared and their α-helicities were investigated. While ProM-5 clearly showed a pronounced effect, an even increased degree of helicity (up to 63 %) was observed in sequences in which non-binding amino acids were replaced by alanine. The binding affinities of the peptides towards the spike protein, as determined by means of microscale thermophoresis (MST), revealed only a subtle influence of the α-helical content and, noteworthy, led to the identification of an Ac-ßHAsp-PP-capped peptide displaying a very strong binding affinity (KD =62 nM).


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Peptídeos/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
7.
Chemistry ; 28(50): e202201670, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771078

RESUMO

Due to the beneficial effects of carbon monoxide as a cell-protective and anti-inflammatory agent, CO-releasing molecules (CORMs) offer some promising potential applications in medicine. In this context, we synthesized a set of acyloxy-cyclohexadiene-Fe(CO)3 complexes, all displaying a N-methyl-pyridinium triflate moiety in the ester side chain, as mitochondria-targeting esterase-triggered CORM prodrugs. Whereas the compounds in which the acyloxy substituent is attached to the 2-position of the diene-Fe(CO)3 unit (A series) spontaneously release CO upon dissolution in phosphate buffer, which remarkably is partly suppressed in the presence of porcine liver esterase (PLE), the 1-substituted isomers (B series) show the expected PLE-induced release of CO (up to 3 equiv.). The biological activity of Mito-CORMs 2/3-B and their isophorone-derived analogs 2/3-A', which also displayed PLE-induced CO release, was assessed by using human umbilical vein endothelial cells (HUVEC). Whereas Mito-CORMs 2/3-B were not cytotoxic up to 500 µM (MTT assay), Mito-CORMs 2/3-A' caused significant toxicity at concentrations above 50 µM. The anti-inflammatory potential of both Mito-CORM variants was demonstrated by concentration-dependent down-regulation of the pro-inflammatory markers VCAM-1, ICAM-1 and CXCL1 as well as induction of HO-1 in TNFα-stimulated human umbilical vein endothelial cells (HUVECs; western blotting and qPCR). Energy phenotyping by seahorse real-time cell metabolic analysis, revealed opposing shifts of metabolic potentials in cells treated either with Mito-CORMs 2/3-B (increased mitochondrial respiration and glycolytic activity) or Mito-CORMs 2/3-A' (suppressed mitochondrial respiration and increased glycolytic activity). Thus, the Mito-CORMs represent valuable tools for the safe and targeted delivery of CO to mitochondria as a subcellular compartment to induce positive anti-inflammatory effects with only minor shifts in cellular energy metabolism. Also, due to their water solubility, these compounds provide a promising starting point for further pharmacological studies.


Assuntos
Esterases , Compostos Organometálicos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Monóxido de Carbono/química , Esterases/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/metabolismo , Compostos Organometálicos/química , Suínos , Água/metabolismo
8.
Angew Chem Int Ed Engl ; 61(26): e202201790, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35349213

RESUMO

In the Sharpless asymmetric epoxidation of chiral secondary allylic alcohols, one substrate enantiomer is predominantly converted to the anti-epoxy alcohol. We herein report the first highly syn-selective epoxidation of terminal allylic alcohols using a titanium salalen complex as catalyst, at room temperature, and aqueous hydrogen peroxide as oxidant. With enantiopure terminal allylic alcohols as substrates, the epoxy alcohols were obtained with up to 98 % yield and up to >99 : 1 dr (syn). Catalyst loadings as low as 1 mol % can be applied without eroding the syn-diastereoselectivity. Modification of the allylic alcohol to an ether does not affect the diastereoselectivity either [>99 : 1 dr (syn)]. Inverting the catalyst configuration leads to the anti-product, albeit at lower dr (ca. 20 : 1). The synthetic potential is demonstrated by a short, gram-scale preparation of a tetrahydrofuran building block with three stereocenters, involving two titanium salalen catalyzed epoxidation steps.

9.
ACS Omega ; 7(3): 2591-2603, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097257

RESUMO

Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of ß-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.

10.
Chemistry ; 27(45): 11574-11579, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34096655

RESUMO

Due to their pronounced bioactivity and limited availability from natural resources, metabolites of the soft coral Pseudopterogorgia elisabethae, such as erogorgiaene and the pseudopterosines, represent important target molecules for chemical synthesis. We have now developed a particularly short and efficient route towards these marine diterpenes exploiting an operationally convenient enantioselective cobalt-catalyzed hydrovinylation as the chirogenic step. Other noteworthy C-C bond forming transformations include diastereoselective Lewis acid-mediated cyclizations, a Suzuki coupling and a carbonyl ene reaction. Starting from 4-methyl-styrene the anti-tubercular agent (+)-erogorgiaene (>98 % ee) was prepared in only 7 steps with 46 % overall yield. In addition, the synthesis of the pseudopterosin A aglycone was achieved in 12 steps with 30 % overall yield and, surprisingly, was found to exhibit a similar anti-inflammatory activity (inhibition of LPS-induced NF-κB activation) as a natural mixture of pseudopterosins A-D or iso-pseudopterosin A, prepared by ß-D-xylosylation of the synthetic aglycone.


Assuntos
Cobalto , Diterpenos , Catálise , Glicosídeos , Estereoisomerismo
11.
Angew Chem Int Ed Engl ; 60(27): 14915-14920, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33978302

RESUMO

A 12-step total synthesis of the natural product dysiherbol A, a strongly anti-inflammatory and anti-tumor avarane meroterpene isolated from the marine sponge Dysidea sp., was elaborated. As key steps, the synthesis features an enantioselective Cu-catalyzed 1,4-addition/enolate-trapping opening move, an Au-catalyzed double cyclization to build up the tetracyclic core-carbon skeleton, and a late installation of the C5-bridgehead methyl group via proton-induced cyclopropane opening associated with spontaneous cyclic ether formation. The obtained pentacyclic compound (corresponding to an anhydride of the originally suggested structure for dysiherbol A) showed identical spectroscopic data as the natural product, but an opposite molecular rotation. CD-spectroscopic measurements finally confirmed that both the constitution and the absolute configuration of the originally proposed structure of (+)-dysiherbol A need to be revised.


Assuntos
Produtos Biológicos/síntese química , Sesquiterpenos/síntese química , Produtos Biológicos/química , Conformação Molecular , Sesquiterpenos/química , Estereoisomerismo
12.
RSC Med Chem ; 12(12): 2053-2059, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024614

RESUMO

Endogenous itaconate as well as the gasotransmitter CO have recently been described as powerful anti-inflammatory and immunomodulating agents. However, each of the two agents comes along with a major drawback: Whereas itaconates only exert beneficial effects at high concentrations above 100 µM, the uncontrolled application of CO has strong toxic effects. To solve these problems, we designed hybrid prodrugs, i.e. itaconates that are conjugated with an esterase-triggered CO-releasing acyloxycyclohexadiene-Fe(CO)3 unit (ItaCORMs). Here, we describe the synthesis of different ItaCORMs and demonstrate their anti-inflammatory potency in cellular assays of primary murine immune cells in the low µmolar range (<10 µM). Thus, ItaCORMs represent a promising new class of hybrid compounds with high clinical potential as anti-inflammatory agents.

13.
Chemistry ; 27(14): 4640-4652, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33314360

RESUMO

The Ir-catalyzed conversion of prochiral tert-cyclobutanols to ß-methyl-substituted ketones proceeds under comparably mild conditions in toluene (45-110 °C) and is particularly suited for the enantioselective desymmetrization of ß-oxy-substituted substrates to give products with a quaternary chirality center with up to 95 % ee using DTBM-SegPhos as a chiral ligand. Deuteration experiments and kinetic isotope effect measurements revealed major mechanistic differences to related RhI -catalyzed transformations. Supported by DFT calculations we propose the initial formation of an IrIII hydride intermediate, which then undergoes a ß-C elimination (C-C bond activation) prior to reductive C-H elimination. The computational model also allows the prediction of the stereochemical outcome. The Ir-catalyzed cyclobutanol cleavage is broadly applicable but fails for substrates bearing strongly coordinating groups. The method is of particular value for the stereo-controlled synthesis of substituted chromanes related to the tocopherols and other natural products.

14.
Chemistry ; 26(19): 4256-4260, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031278

RESUMO

We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8-C19 oxy-bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionalization of ring B was achieved by two different routes to set up a 5α-hydroxy-7-en-6-one moiety. As a key step, an intramolecular oxa-Michael addition was exploited to close the oxy-bridge (8ß,19-epoxy unit). DFT calculations show this reversible transformation being exergonic by about -30 kJ mol-1 . Along the optimized (scalable) synthetic sequence, the target natural product was obtained in only 11 steps in 5 % overall yield. In addition, an access to (isomeric) 7ß,19-epoxy steroids with a previously unknown pentacyclic ring system was discovered.


Assuntos
Antifúngicos/síntese química , Esteroides/química , Esteróis/síntese química , Antifúngicos/química , Hidroxilação , Isomerismo , Estrutura Molecular , Oxirredução , Esteróis/química
15.
Chemistry ; 26(14): 3049-3053, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31961029

RESUMO

A general and powerful method for the stereo-controlled Pd-catalyzed N-allylation of amino acid esters is reported, as a previously largely unsolved synthetic challenge. Employing a new class of tartaric acid-derived C2 -symmetric chiral diphosphane ligands the developed asymmetric amination protocol allows the conversion of various amino acid esters to the N-allylated products with highest levels of enantio- or diastereoselectivity in a fully catalyst-controlled fashion and predictable configuration. Remarkably, the in situ generated catalysts also exhibit outstanding levels of activity (ligand acceleration). The usefulness of the method was demonstrated in the stereo-divergent synthesis of a set of new conformationally defined dipeptide mimetics, which represent new modular building blocks for the development of peptide-inspired bioactive compounds.


Assuntos
Aminoácidos/química , Dipeptídeos/síntese química , Ésteres/química , Paládio/química , Alanina/química , Catálise , Cristalografia por Raios X , Reação de Cicloadição , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Prolina/química , Estereoisomerismo
16.
Angew Chem Int Ed Engl ; 59(14): 5747-5755, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31944532

RESUMO

Collagen model peptides (CMPs) serve as tools for understanding stability and function of the collagen triple helix and have a potential for biomedical applications. In the past, interstrand cross-linking or conformational preconditioning of proline units through stereoelectronic effects have been utilized in the design of stabilized CMPs. To further study the effects determining collagen triple helix stability we investigated a series of CMPs containing synthetic diproline-mimicking modules (ProMs), which were preorganized in a PPII-helix-type conformation by a functionalizable intrastrand C2 bridge. Results of CD-based denaturation studies were correlated with calculated (DFT) conformational preferences of the ProM units, revealing that the relative helix stability is mainly governed by an interplay of main-chain preorganization, ring-flip preference, adaptability, and steric effects. Triple helix integrity was proven by crystal structure analysis and binding to HSP47.


Assuntos
Colágeno/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Teoria da Densidade Funcional , Conformação Molecular , Peptídeos/síntese química , Prolina/química , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Estereoisomerismo
17.
Bioorg Chem ; 94: 103352, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668797

RESUMO

The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects. To explore a wide range of chemical structures as MAGL binders, we have applied a virtual screening approach by docking small molecules into the crystal structure of human MAGL (hMAGL) and envisaged a library of 45 selected compounds which were then synthesized. Biochemical investigations included the determination of the inhibitory potency on hMAGL and two related hydrolases, i.e. human fatty acid amide hydrolase (hFAAH) and murine cholesterol esterase (mCEase). The most promising candidates from theses analyses, i.e. three ω-quinazolinonylalkyl aryl ureas bearing alkyl spacers of three to five methylene groups, exhibited IC50 values of 20-41 µM and reversible, detergent-insensitive behavior towards hMAGL. Among these compounds, the inhibitor 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)butyl)urea (96) was selected for further kinetic characterization, yielding a dissociation constant Ki = 15.4 µM and a mixed-type inhibition with a pronounced competitive component (α = 8.94). This mode of inhibition was further supported by a docking experiment, which suggested that the inhibitor occupies the substrate binding pocket of hMAGL.


Assuntos
Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Quinazolinonas/química , Ureia/farmacologia , Animais , Inibidores Enzimáticos/química , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Ureia/química
18.
Chemistry ; 25(19): 4941-4945, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30741456

RESUMO

A conceptionally new strategy for the asymmetric (2R-selective) synthesis of α-tocopherol (vitamin E) was developed. In the stereocontrolled key step, a prochiral spiro[chromane-2,3'-cyclobutanol] unit is effectively desymmetrized under C-C bond activation in an unprecedented iridium-catalyzed transformation using (S)-DTBM-SegPhos as a chiral ligand (e.r. 97:3). To complete the synthesis, the side chain was attached through Ru-catalyzed cross-metathesis employing an alkene derived from (R,R)-hexahydrofarnesol. To suppress epimerization during the final hydrogenation, PtO2 had to be used as a catalyst instead of Pd/C. In an alternative approach (employing a propargyl-substituted spiro-cyclobutanol), the side chain was constructed prior to the Ir-catalyzed ring fragmentation (>99:1 d.r.) through enyne cross-metathesis (using an alkene derived from (R)-dihydrocitronellal) followed by Cr-catalyzed 1,4-hydrogenation and (diastereoselective) Pfaltz hydrogenation of the resulting triple-substituted olefin. The work demonstrates the potential of iridium catalysis for enantioselective C-C bond activation.

19.
Chemistry ; 25(10): 2511-2518, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30488654

RESUMO

N-Heterocyclic carbenes (NHCs, :C) can interact with azolium salts (C-H+ ) by either forming a hydrogen-bonded aggregate (CHC+ ) or a covalent C-C bond (CCH+ ). In this study, the intramolecular NHC-azolium salt interactions of aromatic imidazolin-2-ylidenes and saturated imidazolidin-2-ylidenes have been investigated in the gas phase by traveling wave ion mobility mass spectrometry (TW IMS) and DFT calculations. The TW IMS experiments provided evidence for the formation of these important intermediates in the gas phase, and they identified the predominant aggregation mode (hydrogen bond vs. covalent C-C) as a function of the nature of the interacting carbene-azolium pairs.

20.
ChemMedChem ; 13(17): 1833-1847, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30004170

RESUMO

Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure-activity relationship study of a small library of ω-phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5-bis(trifluoromethyl)phenyl group and the aromatic character of the ω-phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so-optimized compounds 2 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(3-(1,3-dioxoisoindolin-2-yl)propyl)urea] and 21 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(1,3-dioxoisoindolin-2-yl)butyl)urea] exhibited dissociation constants (Ki ) of 1-19 µm on the two CEases and showed either a competitive (2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases-monoacylglycerol lipase and fatty acid amide hydrolase-were inhibited by ω-phthalimidoalkyl aryl ureas to a lesser extent.


Assuntos
Inibidores Enzimáticos/farmacologia , Esterol Esterase/antagonistas & inibidores , Ureia/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Esterol Esterase/genética , Esterol Esterase/metabolismo , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/química , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...